The LCM-lattice in monomial resolutions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE LCM-LATTICE in MONOMIAL RESOLUTIONS

Describing the properties of the minimal free resolution of a monomial ideal I is a difficult problem posed in the early 1960’s. The main directions of progress on this problem were: • constructing the minimal free resolutions of special monomial ideals, cf. [AHH, BPS] • constructing non-minimal free resolutions; for example, Taylor’s resolution (cf. [Ei, p. 439]) and the cellular resolutions •...

متن کامل

Monomial Resolutions

Let M be a monomial ideal in the polynomial ring S = k[x1, . . . , xn] over a field k. We are interested in the problem, first posed by Kaplansky in the early 1960’s, of finding a minimal free resolution of S/M over S. The difficulty of this problem is reflected in the fact that the homology of arbitrary simplicial complexes can be encoded (via the Stanley-Reisner correspondence [BH,Ho,St]) int...

متن کامل

Lcm Lattices Supporting Pure Resolutions

We characterize the lcm lattices that support a monomial ideal with a pure resolution. Given such a lattice, we provide a construction that yields a monomial ideal with that lcm lattice and whose minimal free resolution is pure.

متن کامل

The Betti poset in monomial resolutions

Let P be a finite partially ordered set with unique minimal element 0̂. We study the Betti poset of P , created by deleting elements q ∈ P for which the open interval (0̂, q) is acyclic. Using basic simplicial topology, we demonstrate an isomorphism in homology between open intervals of the form (0̂, p) ⊂ P and corresponding open intervals in the Betti poset. Our motivating application is that the...

متن کامل

Cellular Resolutions of Monomial Modules

We construct a canonical free resolution for arbitrary monomial modules and lattice ideals. This includes monomial ideals and defining ideals of toric varieties, and it generalizes our joint results with Irena Peeva for generic ideals [BPS],[PS]. Introduction Given a field k, we consider the Laurent polynomial ring T = k[x 1 , . . . , x ±1 n ] as a module over the polynomial ring S = k[x1, . . ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Research Letters

سال: 1999

ISSN: 1073-2780,1945-001X

DOI: 10.4310/mrl.1999.v6.n5.a5